

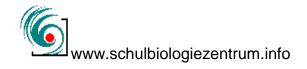
Bioethanol:

Vom Acker in den Tank?

- Arbeitsblätter -

Ein Projekt

des Schulbiologiezentrums Hannover und des Schul-LABs der IGS Mühlenberg


in Kooperation

mit dem Motor-LAB der Berufsbildenden Schule 6 Region Hannover und der Wilhelm-Raabe-Schule (Biotechnologisches Labor)

3. erweiterte Fassung Februar 2012

Impressum:

Titel: Bioethanol: Vom Acker in den Tank?

Arbeitsblätter

November 2010 (Stand 12.02.12)

Verfasser: Ingo Mennerich

Mitarbeit: Arno Mühlenhaupt

(Schul-LAB, IGS Mühlenberg)

Jürgen Molsbach

(Motor-LAB, Berufsbildende Schule 6)

Marietta Vollmer-Schöneberg

(Wilhelm-Raabe-Schule, Biotechnologisches Labor)

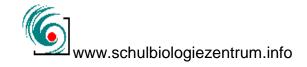
Fotos: Ingo Mennerich, Arno Mühlenhaupt, Jürgen Molsbach

Herausgeber: Landeshauptstadt Hannover

Fachbereich Bibliothek und Schule

Schulbiologiezentrum Vinnhorster Weg 2 30419 Hannover Tel: 0511/168-47665

Tel: 0511/168-47665 Fax: 0511/168-47352


E-Mail: schulbiologiezentrum@hannover-stadt.de

Internet: www.schulbiologiezentrum.info

Schul-LAB / IGS Mühlenberg

Mühlenberger Markt 1 30457 Hannover

Tel: 0511/168-48508 E-Mail: schul-lab@web.de Internet: www.schul-lab.de

Inhalt:

Herstellung von Rübensaft und (optional) Zucker

Extraktion von Stärke aus Kartoffeln

Stärkegehalt der Kartoffeln bestimmen

Herstellung von Malz aus Gerstensamen, Stärke verzuckern

Einmaischen und Rasten

Läutern, Sterilisieren, Zuckergehalt messen, Jodprobe

"Bierspindel" (Aräometer) Zuckergehalt der Würze

Hefe und Gärung Verwandlung Zucker → Alkohol

Gärende Hefe unter dem Mikroskop

Demonstrationsversuch: Ethanolgas brennt

Destillation

Versuchsaufbau: Destillation von Ethanol

Bestimmung der Siedepunkte von Ethanol und Wasser

Energiegehalt Ethanol (Einfache Kalorimetrie)

Alkoholgehalt des Destillats

Dichte und Alkoholgehalt (Tabelle)

Treibstoffe im Vergleich:

Benzin, Ethanol, Diesel, Rapsöl Biodiesel, Heiz- und Brenneigenschaften

Information: Eigenschaften verschiedener Brennstoffe

Alkohol im Verbrennungsmotor

Wie viel Ethanol kann man aus Zucker (Glucose) gewinnen?

Baue ein Glucosemolekül:

Verbrennung von Ethanol: Nachweis der Reaktionsprodukte

Versuchsaufbau: Ethanol: Nachweis der Verbrennungsprodukte

Verbrennung von Ethanol (I a)

Verbrennung von Ethanol (I b)

Verbrennung von Ethanol (II)

Information: Mol und Gasvolumen (Ethanol und CO₂)

Verbrennung von Ethanol: Volumen CO₂

Information: Erdöl und Alkane Verbrennung von Benzin (Oktan)

Information: Mol und Gasvolumen (Oktan und CO₂) Verbrennung von Benzin (Oktan): Volumen CO₂

CO₂-Ausstoß pro Kilometer

CO₂-neutral oder nicht?

Energie- und Stoffumwandlung in der Kerze (Paraffin / Bienenwachs)

Modell eines Viertakt-Motors

Funktionsmodell "Treibhauseffekt"

Auf dem "Muskelkraftwerk" Energie erfahren:

Wie viel Ackerfläche braucht ein "umweltfreundliches" Auto?

Flächenbedarf Ethanol (Information Fachagentur nachwachsende Rohstoffe)

Biokraftstoffe im Vergleich (Information Fachagentur nachwachsende Rohstoffe)

Wie viel Ackerfläche braucht Bioethanol?

(Kartoffeln, Mais, Weizen, Roggen, Zuckerrüben

Heiß auf Mais (Preisentwicklung Rohstoffbörsen, Financial Times 17.09.10)

Verbrennung (Methan) - Sauerstoffbedarf / CO2-Ausstoß (Musterrechnung)

Verbrennung (Ethanol) - Sauerstoffbedarf / CO2-Ausstoß (Musterrechnung)

Verbrennung (Oktan) - Sauerstoffbedarf / CO2-Ausstoß (Musterrechnung)

Hinweis:

Einen Teil dieser Sammlung finden Sie auch in der vom Schulbiologiezentrum Hannover herausgegebenen Arbeitshilfe "Bioethanol: Vom Acker in den Tank?". Die Arbeitshilfe enthält allerdings auch noch andere Aspekte. Sie finden Sie unter www.schulbiologiezentrum.info

► Rübensaft und Zucker aus Zuckerrüben

Herstellung von Rübensaft und Zucker

Material

- 1 große Zuckerrübe
- Große Schale, Schälmesser, Reibe
- Wasserkocher, Wasser
- Herdplatte, Topf
- Filtereinsatz, Filtertüte(n)

Rübenschnitzel herstellen und auskochen

- Rübe schälen und mit der Reibe dünne Schnitzel herstellen
- Schnitzel in Topf geben, mit kochendem Wasser übergießen
- Aufkochen und unter Rühren (!) köcheln lassen
- Wasser dabei langsam verdampfen lassen
- Von Zeit zu Zeit mit dem Refraktometer Zuckergehalt überprüfen

Zuckergehalt prüfen

• 1 Tropfen Rübensaft in **Refraktometer** geben und Messwert ablesen (Vorgehensweise vom Lehrer erklären lassen!)

Rübensaft filtern

- 10 15%igen Rübensaft abgießen und filtern
- Erneut Zuckergehalt pr

 üfen

Zucker herstellen (Option)

- Etwas mehrfach gefilterten (klaren!) Rübensaft dünn in flache Schale ausgießen und verdunsten lassen
- **Tipp**: Vorher 1 Tropfen unter Mikroskop geben und Wasser verdunsten lassen

Information:

Die Zuckerrübe (Beta vulgaris) ist eine **zweijährige** Kulturpflanze. Sie wird im Frühjahr ausgesät. Im ersten Jahr bildet sie nur grüne Blätter. Sie verwandeln Sonnenenergie in Zucker (Photosynthese). Der Zucker wird im Herbst und Winter in der unterirdisch heranwachsenden Rübe gespeichert. Im Frühjahr des zweiten Jahres wird die so gespeicherte Sonnenenergie genutzt um eine etwa 1,5 m hohe, im Sommer blühende und Samen bildende Pflanze zu bilden.

Nahe **Verwandte** der Zuckerrübe sind: Wild-Bete (wächst an der Nordsee, wilde Ausgangsform der gezüchteten Kulturformen: Rote Bete, Futterrübe, Mangold

Zur Herstellung von 1 I Bioethanol werden 7,9 kg Zuckerrüben oder 1,5 m² Anbaufläche gebraucht.

► Stärke aus Kartoffeln gewinnen

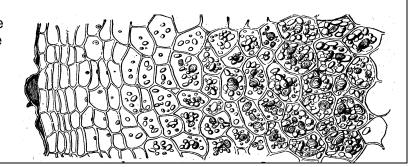
Extraktion von Stärke aus Kartoffeln

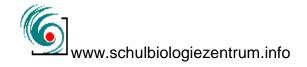
Material

- Kartoffeln
- große Schale, Schälmesser, Reibe
- großes Sieb, Baumwolltuch (Babywindel)
- Messbecher, Messzylinder
- Mikroskop, Objektträger, Deckglas, Rasierklinge, Jodlösung

Stärkegewinnung

- Kartoffeln schälen mit der Reibe zu "Kartoffelbrei" (Reibsel) verarbeiten
- Kartoffelreibsel in Sieb geben und vorsichtig auspressen
- Rest mit Baumwolltuch auspressen bis kein Wasser mehr austritt
- Reibsel (Presskuchen / Rohfaser) in Messgefäß geben
- Wasser im Behälter auffangen und in Messzylinder geben
- Stärke sedimentieren lassen (Wasser muss klar sein!)
- Rohfaser-, Wasser- und Stärkeanteil abschätzen


Volumenanteile:


Reibsel	%	Die Stärke sinkt zu Boden (sedimentiert).
Wasser	%	Nach dem vorsichtigen (!) Abgießen des Wassers (dekantieren) bleibt die Stärke zurück.
Stärke	%	Sie wird auf einer großen flachen Unterlage ausgebreitet und getrocknet (Sonne, Umluftherd)

Kartoffelstärke unter dem Mikroskop:

Stelle mit der Rasierklinge (Vorsicht!) dünne Schnitte der rohen Kartoffel her und mikroskopiere sie. Gib verdünnte Jodlösung dazu.

Mikroskopiere auch die extrahierte Stärke.

► Stärkegehalt Kartoffeln

Stärkegehalt der Kartoffeln bestimmen

Bestimme das Gewicht, das Volumen und die Dichte von Kartoffeln und ermittle daraus den Stärkegehalt.

- Schäle 5 Kartoffeln und bestimme ihr genaues Gewicht
- Tauche sie vollständig in ein mit Wasser gefülltes Messgefäß und miss das Volumen des verdrängten Wassers (Wasserstand vor und nach dem Eintauchen)
- Berechne die Dichte (Gewicht in g / Volumen in cm³)
- Lies den Stärkegehalt in der Tabelle ab.

Gewicht:	 g
Volumen:	 cm ³
Dichte:	 g/cm ³

	Dichte	Stärke %	Dichte	Stärke %
%				
7,4	1,0834	14,7	1,1198	22,5
7,6	1,0846	14,9	1,1211	22,7
7,8	1,0858	15,2	1,1224	23
8,1	1,0870	15,4	1,1236	23,3
8,3	1,0881	15,7	1,1249	23,5
8,6	1,0893	15,9	1,1261	23,8
8,8	1,0905	16,2	1,1274	24,1
9,0	1,0917	16,4	1,1286	24,3
9,3	1,0929	16,7	1,1299	24,6
9,5	1,0941	17,0	1,1312	24,9
9,7	1,0953	17,2	1,1325	25,2
10,0	1,0965	17,5	1,1338	25,4
10,2	1,0977	17,7	1,1351	25,7
10,5	1,0989	18,0	1,1364	26,0
10,7	1,1001	18,2	1,1377	26,3
11,0	1,1013	18,5	1,1390	26,6
11,2	1,1025	18,7	1,1403	26,8
11,5	1,1038	19,0	1,1416	27,1
11,7	1,1050	19,3	1,1429	27,4
11,9	1,1062	19,5	1,1442	27,7
12,2	1,1074	19,8	1,1455	28,0
12,4	1,1086	20,1	1,1468	28,2
12,7	1,1099	20,3	1,1481	28,5
12,9	1,1111	20,6	1,1494	28,8
13,2	1,1123	20,8	1,1507	29,1
13,4	1,1136	21,1	1,1521	29,4
13,7	1,1148	21,4	1,1534	29,6
13,9	1,1161	21,7	1,1547	29,9
14,2	1,1173	21,9	1,1561	30,2
14,4	1,1186	22,2	1,1574	30,5
	9,0 9,3 9,5 9,7 10,0 10,2 10,5 10,7 11,0 11,2 11,5 11,7 11,9 12,2 12,4 12,7 12,9 13,2 13,4 13,7 13,9 14,2	9,0 1,0917 9,3 1,0929 9,5 1,0941 9,7 1,0953 10,0 1,0965 10,2 1,0977 10,5 1,0989 10,7 1,1001 11,0 1,1013 11,2 1,1025 11,5 1,1038 11,7 1,1050 11,9 1,1062 12,2 1,1074 12,4 1,1086 12,7 1,1099 12,9 1,1111 13,2 1,1123 13,4 1,1136 13,7 1,1148 13,9 1,1161 14,2 1,1173	9,0 1,0917 16,4 9,3 1,0929 16,7 9,5 1,0941 17,0 9,7 1,0953 17,2 10,0 1,0965 17,5 10,2 1,0977 17,7 10,5 1,0989 18,0 10,7 1,1001 18,2 11,0 1,1013 18,5 11,2 1,1025 18,7 11,5 1,1038 19,0 11,7 1,1050 19,3 11,9 1,1062 19,5 12,2 1,1074 19,8 12,4 1,1086 20,1 12,7 1,1099 20,3 12,9 1,1111 20,6 13,2 1,1123 20,8 13,4 1,1148 21,4 13,9 1,1161 21,7 14,2 1,1173 21,9 14,4 1,1186 22,2	9,0 1,0917 16,4 1,1286 9,3 1,0929 16,7 1,1299 9,5 1,0941 17,0 1,1312 9,7 1,0953 17,2 1,1325 10,0 1,0965 17,5 1,1338 10,2 1,0977 17,7 1,1351 10,5 1,0989 18,0 1,1364 10,7 1,1001 18,2 1,1377 11,0 1,1013 18,5 1,1390 11,2 1,1025 18,7 1,1403 11,5 1,1038 19,0 1,1416 11,7 1,1050 19,3 1,1429 11,9 1,1062 19,5 1,1442 12,2 1,1074 19,8 1,1455 12,4 1,1086 20,1 1,1468 12,7 1,1099 20,3 1,1481 12,9 1,1111 20,6 1,1494 13,2 1,1123 20,8 1,1507 13,4 1,1136<

Tabellenwerte: http://www.pflanzenbau.rlp.de (Auszug)

► Mälzen der Gerste

Herstellung von Malz (Stärke verzuckern)

Langzeitexperiment: Keimung und Darren 5 – 6 Tage

Material

- 50 g keimfähige Gerste (vom Bauern) oder reife Gerstensamen vom Acker (Samenruhe mindestens 2 Monate!)
- Transparenter Kunststoffbecher mit Deckel
- 2 3 Blatt Toilettenpapier
- Etwas Wasser
- Backofen
- Mörser

Aussaat

- Boden des Bechers mit Toilettenpapier bedecken
- Etwas Wasser hinzugeben
- Gerstensamen gleichmäßig auf Papier verteilen
- Deckel aufsetzen

Mälzen

- Nach 24 Stunden überschüssiges Wasser abgießen
- Gerstensamen bei etwa 18°C keimen lassen
- Täglich lüften (Deckel aufmachen!), ggf. Wasser hinzugeben
- Samen durch leichtes Klopfen auf den Becherboden durchmischen (sonst Schimmel- und Fäulnisbildung!)
- Ausbildung von mehreren Wurzeln und kurzem grünen Keim

Darren

- Nach 5 6 Tagen im Backofen bei 50°C trocknen ("Schwelken") dann bei 100 120°C "abdarren": Malz wird dabei je nach heller oder dunkeler
- Abgestorbene Keimlinge entfernen, Malz sollte süß ("karamellig") schmecken

Schroten

 Trockenes (!) Malz grob schroten (Mühle) oder mit Mörser leicht andrücken

Alternativ: Malz im Brauereifachhandel kaufen

► Stärkeverzuckerung, alkoholische Gärung und Destillation

Einmaischen und Rasten (Stärke verzuckern)

Maische

- 100 g Maisgries (Polenta)
- 25 g Braumalz (Gerstenmalz)
- 500 ml Leitungswasser

Maische auf optimalen pH-Wert einstellen

- pH-Wert messen (Teststreifen): _____
- Mit Essig auf pH 4,5 ansäuern (Teststreifen)

Erhitzen

• Im Topf unter Rühren langsam auf 62°C bringen

Rasten

- Heiße Maische in Thermoskanne füllen
- Maltoserast: 60 Minuten (β-Amylase)
- Im Topf unter Rühren langsam auf 75°C bringen
- In Thermoskanne geben
- Dextrinrast: 60 Minuten (α-Amylase)
- Geschmacks- und Fingerprobe: □ positiv / □ negativ

► Stärkeverzuckerung, alkoholische Gärung und Destillation

Läutern, Sterilisieren, Zuckergehalt messen, Jodprobe

Läutern und Sterilisieren

- Würze durch Küchenhandtuch geben (filtern)
- Geläuterte Würze aufkochen (keimfrei machen)
- schnell abkühlen lassen
- Kleine Menge Treber aufbewahren (Jodprobe!)
- Restlichen Treber in mit 70° heißem Wasser aufgießen
- In Thermoskanne zurückgeben

Zuckergehalt messen:

• Refraktometer: ___ g / 100 ml


• Aräometer: ___ g / 100 ml

• "Bierspindel": ____g / 100 ml

Jodprobe

Würze: □ positiv / □ negativ

Treber: □ positiv / □ negativ

► Stärkeverzuckerung, alkoholische Gärung und Destillation

"Bierspindel" (Aräometer) (Zuckergehalt der Würze)

Materialien

- dicker Trinkhalm (transparent)
- Knetmasse
- Millimeterpapier (Skala)
- dünner Trinkhalm (als Stütze der Skala)
- Bleistift, Schere

Herstellung

- Dicken Trinkhalm mit unten Knetmasse abdichten
- Millimeterpapier (20 x 1 cm) zurechtschneiden
- Skala (1 20) auftragen (Bleistift)
- Skala in Trinkhalm einführen (dünner Trinkhalm als Stütze)
- Unteres Ende mit etwa 10 cm³ Knetmasse beschweren (Aräometer muss in Standzylinder passen und schwimmen!)

Messung des Zuckergehalts

- Wässrige Lösungen mit jeweils 0, 6 und 12 g
- Zucker/100ml herstellen (etwa 0, 2 und 4 Zuckerwürfel)
- Zuckergehalt mit dem Refraktometer kontrollieren
- Eintauchtiefen des "Aräometers" notieren
- Mit 100 ml geläuterter, abgekühlter Würze vergleichen

Zuckergehalt der Würze: _____ g / 100 ml

Stärkeverzuckerung, ▶alkoholische Gärung und Destillation

Hefe und Gärung (Verwandlung Zucker → Alkohol)

Hefe ansetzen

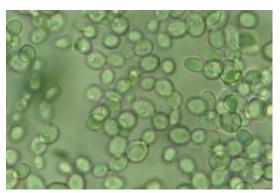
- 1 cm³ Backhefe und 2 Zuckerwürfel in 30 ml lauwarmes Wasser geben (Messbecher)
- Hefeansatz belüften (rühren)

Würze mit Hefe versetzen

- Auf 30°C abgekühlte Würze in Flasche füllen
- Hefeansatz hinzugeben
- An warmen Platz stellen (30°C)

Gärung

- Gärröhrchen vorbereiten und auf Flasche setzen.
- Gasbildung (CO₂) protokollieren: Blasen pro Minute
- Tabelle in Diagramm übersetzen


Stärkeverzuckerung, ▶alkoholische Gärung und Destillation

Hefevermehrung, gärende Hefe unter dem Mikroskop

Hefe mikroskopieren

- Messerspitze Backhefe und etwas Zucker in eine Tasse lauwarmes Wasser geben
- Hefeansatz belüften (rühren!)
- Beim Mikroskopieren auf Zellvermehrung (Teilungsstadien) achten:

Massenvermehrung:

Hefezellen vermehren sich in sauerstoffreicher Umgebung ungeschlechtlich (vegetativ) durch Sprossung: Dabei bilden sie zunächst kleine Auswüchse die heranwachsen und sich dann als "Tochterzelle" von der "Mutterzelle" ablösen.

Hefe erzeugt Kohlenstoffdioxid

- Gärende, d.h. unter sauerstoffarmer Umgebung lebende Hefezellen unter das Mikroskop bringen (mit Deckglas!)
- Auf Luftblasen (Kohlenstoffdioxid) achten!

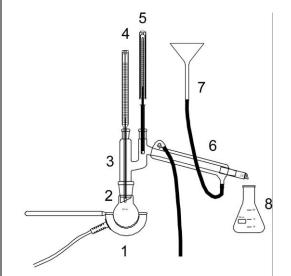
Beobachtungen:

- Kann man Hefezellen beim Atmen beobachten?
- Wie klein sind die kleinsten Luftblasen?
- Wie wird eine Luftblase "geboren"?

Demonstrationsversuch: Ethanolgas brennt

Ethanol siedet früher als Wasser und verbrennt mit bläulicher, nicht rußender Flamme.


Rundkolben zur Hälfte mit vergorenem Saft oder selbsterzeugtem "Bier" füllen, Siedesteinchen hinzugeben, Stopfen mit Glasrohr aufsetzen, mit Laborheizer, Heizhaube o.ä. erhitzen. Aufsteigendes Ethanolgas entzünden.



Stärkeverzuckerung, alkoholische Gärung und ▶ Destillation

Destillation

Destillationsgerät

- 1 Heizung
- 2 Rundkolben
- 3 Destillieraufsatz
- 4 Thermometer
- 5 Thermometer
- 6 Kühler
- 7 Kühlwasserzufluss
- 8 Vorlage (Destillat)

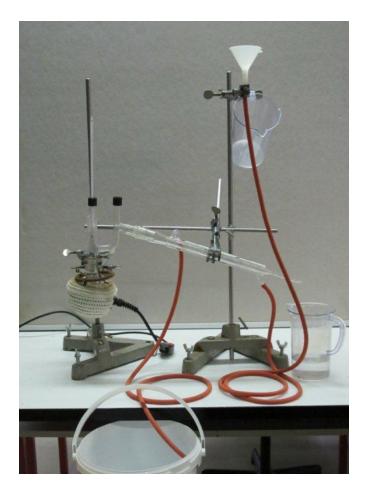
Destillieren

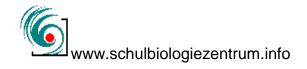
- Siedepunkt Ethanol: _____ °C
- Siedepunkt Methanol: _____°C
- "Vorlauf" und "Nachlauf" nicht auffangen ("verwerfen")

Messung des Alkoholgehalts:

Dichte Wasser: 1,000 g / ml Dichte Ethanol: 0,790 g /ml

Dichte des Destillat: _____ g / cm³

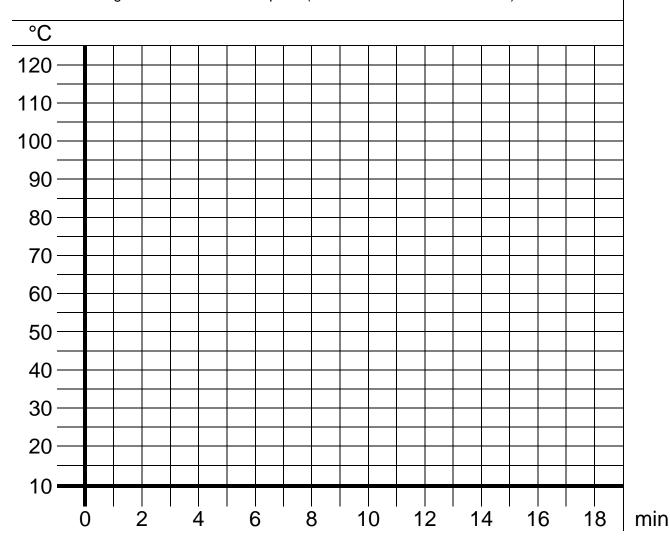



Versuchsaufbau: Destillation von Ethanol

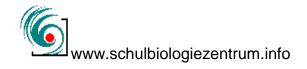
Ethanol siedet bei 78°C, Wasser bei 100°C.

Rundkolben zur Hälfte mit vergorenem Saft oder selbsterzeugtem "Bier" füllen, Siedesteinchen hinzugeben, in Destillationsgerät einsetzen, Thermometer einbauen und Gärprodukt mit Heizhaube auf Temperatur > 78°C und < 100°C bringen. Entscheidend ist die Temperatur am Eingang in den Kühler. Der Kühler muss ständig mit kaltem Wasser gefüllt sein (ggf. über Trichter nachfüllen)

Das Destillat enthält einen von der Einhaltung der Brenntemperatur abhängigen Anteil von Wasser (max. 94%), höhere Alkoholkonzentration muss durch (aufwändige) Rektifikation erfolgen. Ab etwa 53 Vol% ist das Destillat brennbar.



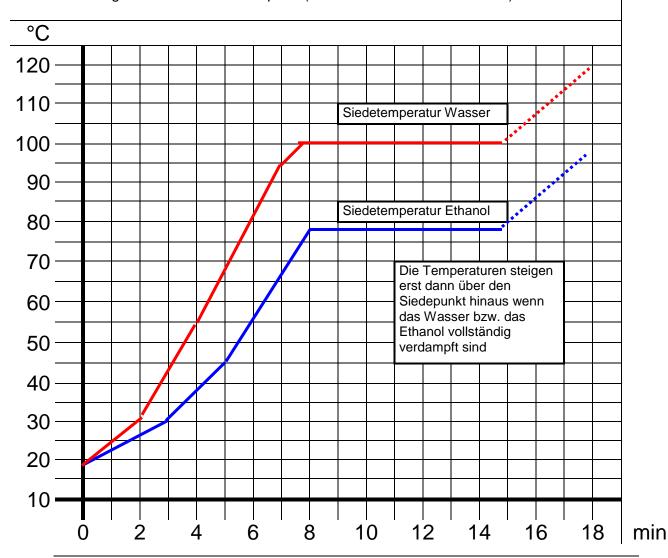
► Siedepunkte Wasser und Ethanol


Bestimmung der Siedepunkte von Ethanol und Wasser

Materialien

- Herdplatte, Kochtopf, Wasser
- Erlenmeyerkolben, Ethanol (Brennspiritus), Stativ
- 2 Thermometer und Uhr
- Gib etwas Ethanol in den Erlenmeyerkolben und erhitze es im Wasserbad
- · Achte darauf, dass das Thermometer in das Ethanol taucht
- Notiere im Abstand von 1 min die Temperatur des Wassers und des Ethanols
- Übertrage die Werte in den Graphen (Benutze verschiedene Farben!)

Schulbiologiezentrum Hannover: Bioethanol: Vom Acker in den Tank? / Me 120212


► Siedepunkte Wasser und Ethanol

LÖSUNG

Bestimmung der Siedepunkte von Ethanol und Wasser

Materialien

- Herdplatte, Kochtopf, Wasser
- Erlenmeyerkolben, Ethanol (Brennspiritus), Stativ
- 2 Thermometer und Uhr
- Gib etwas Ethanol in den Erlenmeyerkolben und erhitze es im Wasserbad
- · Achte darauf, dass das Thermometer in das Ethanol taucht
- Notiere im Abstand von 1 min die Temperatur des Wassers und des Ethanols
- Übertrage die Werte in den Graphen (Benutze verschiedene Farben!)

Schulbiologiezentrum Hannover: Bioethanol: Vom Acker in den Tank? / Me 120212

Stärkeverzuckerung, ▶alkoholische Gärung und Destillation

Energiegehalt Ethanol (Einfache Kalorimetrie)

4,2 J Energie erwärmen 1 ml Wasser (1 cm³) um 1°C

Versuch:

Tasse, Alubecher, Gitter, kleine Dose, Thermometer

- 2 g Brennspiritus (Ethanol) im Alubecher abwiegen (Tara!)
- Alubecher in Tasse stellen
- 100 ml Wasser (= 100 g) in Dose geben
- Ethanol entzünden (Stabfeuerzeug / langes Streichholz)
- Gitter auf Tasse legen, Dose auf Gitter stellen
- Versuch endet, wenn Ethanol ausgebrannt ist.

Kalorimetrie

•	Starttemperatur des Wassers:	°C
•	Endtemperatur des Wassers:	°C
•	Temperaturdifferenz	°C
•	Masse Brennspiritus / Alubeche	r (Start) (

Beispiel: E = 4.2 J x 100 g x Temperaturdifferenz

1kg Ethanol enthält (mindestens!)....

•	J oder	MJ Energie
•	Tatsächlicher Wert:	MJ / kg
•	Energiegehalt Normalbenzin:	MJ / kg
•	Energiegehalt Ethanol:%	Normalbenzin

Stärkeverzuckerung, alkoholische Gärung und ▶ Destillation

Alkoholgehalt des Destillats

Info:


Dichte Wasser: 1,00 g / ml Dichte Ethanol: 0,79 g /ml

• Dichte des Destillats: _____ g / cm³

Messung des Alkoholgehalts (Näherung!)

- Aus Wasser und Brennspiritus (Ethanol) Lösungen mit unterschiedlicher Konzentration herstellen
- Dichte durch Wägen feststellen (auf "Tara" achten!)
- 10% Ethanol \rightarrow _____ g / cm³
- 20% Ethanol \rightarrow _____ g / cm³
- 30% Ethanol \rightarrow _____ g / cm³
- 40% Ethanol \rightarrow _____ g / cm³
- 50% Ethanol \rightarrow ____ g / cm³
- 60% Ethanol \rightarrow _____ g / cm³
- 70% Ethanol \rightarrow _____ g / cm³
- 80% Ethanol → _____ g / cm³
- 90% Ethanol \rightarrow _____ g / cm³

Vermutlicher Alkoholgehalt des Destillats: ____%

Stärkeverzuckerung, alkoholische Gärung und ▶ Destillation

LÖSUNG

%

Alkoholgehalt des Destillats

Info:


Dichte Wasser: 1,00 g / ml Dichte Ethanol: 0,79 g /ml

• Dichte des Destillats: _____ g / cm³

Messung des Alkoholgehalts (Näherung!)

- Aus Wasser und Brennspiritus (Ethanol) Lösungen mit unterschiedlicher Konzentration herstellen
- Dichte durch Wägen feststellen (auf "Tara" achten!)
- 10% Ethanol \rightarrow _0,99_ g / cm³
- 20% Ethanol \rightarrow _0,97__ g / cm³
- 30% Ethanol → _0,96__ g / cm³
- 40% Ethanol \rightarrow _0,95__ g / cm³
- 50% Ethanol → _0,93__ g / cm³
- 60% Ethanol \rightarrow _0,91__ g / cm³
- 70% Ethanol \rightarrow _0,89_ g / cm³
- 80% Ethanol \rightarrow _0,86_ g / cm³
- 90% Ethanol \rightarrow _0,83_ g / cm³

Vermutlicher Alkoholgehalt des Destillats:

► Destillation : Dichte und Alkoholgehalt

Dichte und Alkoholgehalt des Destillats

	Ethanol-Wasser-Gemische							
Dichte(20) [g/ml]	Gew%- Ethanol	Vol%- Ethanol	Dichte(20) [g/ml]	Gew%- Ethanol	Vol%- Ethanol	Dichte(20) [g/ml]	Gew%- Ethanol	Vol%- Ethanol
1,00000	0	0	0,94662	35	41,9	0,87158	69	76,0
0,99813	1	1,3	0,94473	36	43,0	0,86920	70	76,9
0,99629	2	2,5	0,94281	37	44,1	0,86680	71	77,8
0,99451	3	3,8	0,94086	38	45,2	0,86440	72	78,6
0,99279	4	5,0	0,93886	39	46,3	0,86200	73	79,5
0,99113	5	6,2	0,93684	40	47,4	0,85958	74	80,4
0,98955	6	7,5	0,93479	41	48,43	0,85716	75	81,2
0,98802	7	8,7	0,93272	42	49,51	0,85473	76	82,1
0,98653	8	10,0	0,93062	43	50,6	0,85230	77	83,0
0,98505	9	11,2	0,92849	44	51,6	0,84985	78	83,8
0,98361	10	12,4	0,92636	45	52,6	0,84740	79	84,6
0,98221	11	13,6	0,92421	46	53,7	0,84494	80	85,4
0,98084	12	14,8	0,92204	47	54,7	0,84245	81	86,2
0,97948	13	16,1	0,91986	48	55,8	0,83997	82	87,1
0,97816	14	17,3	0,91766	49	56,8	0,83747	83	87,9
0,97687	15	18,5	0,91546	50	57,8	0,83496	84	88,7
0,97560	16	19,7	0,91322	51	58,8	0,83242	85	89,5
0,97431	17	20,9	0,91097	52	59,8	0,82987	86	90,2
0,97301	18	22,1	0,90872	53	60,8	0,82729	87	91,0
0,97169	19	23,3	0,90645	54	61,8	0,82469	88	91,8
0,97036	20	24,5	0,90418	55	62,8	0,82207	89	92,5
0,96901	21	25,7	0,90191	56	63,8	0,81942	90	93,2
0,96763	22	26,9	0,89962	57	64,8	0,81674	91	94,0
0,96624	23	28,1	0,89733	58	65,8	0,81401	92	94,7
0,96483	24	29,2	0,89502	59	66,8	0,81127	93	95,4
0,96339	25	30,4	0,89271	60	67,7	0,80848	94	96,1
0,96190	26	31,6	0,8904	61	68,6	0,80567	95	96,7
0,96037	27	32,7	0,88807	62	69,6	0,8028	96	97,4
0,95880	28	33,9	0,88574	63	70,5	0,79988	97	98,1
0,95717	29	35,1	0,88339	64	71,5	0,79688	98	98,7
0,95551	30	36,2	0,88104	65	72,4	0,79383	99	99,3
0,95381	31	37,4	0,87869	66	73,3	0,79074	100	100,0
0,95207	32	38,5	0,87632	67	74,2	1		1
0,95028	33	39,6	0,87396	68	75,1			
0,94847	34	40,7	1					

Stärkeverzuckerung, alkoholische Gärung, Destillation, ▶ Brennbarkeit

Treibstoffe im Vergleich

(Benzin, Ethanol, Diesel, Rapsöl Biodiesel)

- Heiz- und Brenneigenschaften -

Versuch:

Brennschale, Alubecher, Gitter, kleine Dose, Thermometer, Uhr

- Jeweils 2 g Brennspiritus (95% Ethanol), Benzin (Waschbenzin), Diesel, Rapsöl und Biodiesel (Rapsölmethylester) im Alubecher (Tara!) abwiegen
- Rapsöl und Biodiesel mit "Docht" versehen
- Alubecher in Brennschale stellen
- 100 ml Wasser (= 100 g) in Dose geben
- Brennstoff entzünden (Stabfeuerzeug / langes Streichholz)
- Gitter auf Schale legen, Dose auf Gitter stellen
- Versuch endet, wenn Brennstoff ausgebrannt ist. Dann Zeit notieren!

Endtemperaturen (nach Ausbrennen des Brennstoffes) und Zeit

Benzin		Ethanol	Diesel	Rapsöl	Biodiesel
°	С	° C	°C	°C	°C
m	in	min	min	min	min

Brenneigenschaften

(Entzündbarkeit, Flammenfarbe, Rußbildung usw.)

Benzin	Ethanol	Diesel	Rapsöl	Biodiesel
		•••••	•••••	

Stärkeverzuckerung, alkoholische Gärung, Destillation, ▶ Brennbarkeit

LÖSUNG

Treibstoffe im Vergleich

(Benzin, Ethanol, Diesel, Rapsöl Biodiesel)

- Heiz- und Brenneigenschaften -

Versuch:

Brennschale, Alubecher, Gitter, kleine Dose, Thermometer, Uhr

- Jeweils 2 g Brennspiritus (95% Ethanol), Benzin (Waschbenzin), Diesel,
 Rapsöl und Biodiesel (Rapsölmethylester) im Alubecher (Tara!) abwiegen
- Rapsöl und Biodiesel mit "Docht" versehen
- Alubecher in Brennschale stellen
- 100 ml Wasser (= 100 g) in Dose geben
- Brennstoff entzünden (Stabfeuerzeug / langes Streichholz)
- Gitter auf Schale legen, Dose auf Gitter stellen
- Versuch endet, wenn Brennstoff ausgebrannt ist. Dann Zeit notieren!

Endtemperaturen (nach Ausbrennen des Brennstoffes) und Zeit

Benzin	Ethanol	Diesel	Rapsöl	Biodiesel
66 ° C	_70_ ° C	_85_ ° C	_85_ ° C	_80_ ° C
min	min	min	min	min

Brenneigenschaften

(Entzündbarkeit, Flammenfarbe, Rußbildung usw.)

Benzin	Ethanol	Diesel	Rapsöl	Biodiesel
leicht entzündlich	leicht entzündlich	schwer entzündlich	schwer entzündlich	schwer entzündlich
Flamme gelb	Flamme blau	Flamme gelb	Flamme gelb	Flamme gelb
kein Ruß	kein Ruß	.starker Ruß.	Ruß	Ruß

▶Information: Eigenschaften verschiedener Brennstoffe

Energiegehalt (Heizwert):

Brennstoff	Dichte (g/cm ³)	MJ / I	MJ / Kg
Ethanol	0,79	21,2	26,8
Benzin	0,75 Ø	32,0	42,7
Superbenzin	0,76 Ø	33,0	43,5
Diesel	0,84 Ø	35,7	42,5
Rapsöl	0,92	34,6	37,6
Biodiesel (Rapsmethylester)	0,88	32,7	37,2

Brennstoff	Siedetemperatur bzw. Siedebereich °C	Flammpunkt °C	Zündtemperatur °C	Zündgrenze (untere/obere) Gas- Luftgemisch %
Ethanol	78	12	425	3,4 / 15
Benzin	30 – 215	< - 35	340	1,4 / 7,6
Superbenzin	25 – 215	< - 35	340	1,4 / 7,6
Diesel	150 - 390	> 55	220	0,6 / 7,5
Rapsöl	> 350	> 300	k.A.	k.A.
Biodiesel	ca. 300	180	k.A.	k.A.
(Rapsmethylester)				

Bei **Stoffgemischen** (z.B. Benzin und Diesel) gibt es einen Siedebereich (leichte Bestandteile sieden früher als schwere)

Der **Flammpunkt** eines Stoffes ist die niedrigste Temperatur, bei der sich über einem Stoff ein zündfähiges Dampf-Luft-Gemisch bilden kann

Quellen: Sicherheitsdatenblätter nach EU-Norm

Stärkeverzuckerung, alkoholische Gärung, Destillation, ▶ Brennbarkeit

Alkohol im Verbrennungsmotor

Brennbarkeit von Luft-Alkoholgemischen

- Im Verbrennungsmotor wird ein im Vergaser erzeugtes Luft-Treibstoffgemisch im Zylinder durch die Zündkerze zur kontrollierten Verbrennung gebracht.
- Mit einer Pappdose ("Zylinder"), Deckel ("Kolben"), Brennspiritus ("Treibstoff") und Streichholz ("Zündkerze") lässt sich das im Experiment nachvollziehen.
- Ist das selbst hergestellte Destillat motortauglich?

Material

- Pappdose mit Kunststoffdeckel (z.B. "Pringles")
- 2 ml Brennspiritus (Messpipette mit Peleus-Ball)
- Wattebausch
- Korken
- Messer
- Zündhölzer
- Teller (zum Ablöschen)

Durchführung

- Pappdose etwa 1 cm über dem Boden mit Loch 5 mm Ø) versehen
- Vom Korken kleine Stücke abschneiden (Messer)
- 2 ml Brennspiritus auf Wattebausch tropfen und in die Dose geben
- Deckel schließen
- Etwa 1 Minute schütteln (Alkohol verdampft)
- Dose aufrecht mit Deckel nach oben in Topf stellen
- Streichholz entzünden und ans Loch halten
- Flammen in der Dose durch Auflegen des Tellers löschen

► Gärung (Ethanolertrag)

Wie viel Ethanol kann man aus Zucker (Glucose) gewinnen?

Reaktionsgleichung (Garung)		
	,	

Molmassen: Wasserstoff 1
Kohlenstoff 12
Sauerstoff 16

Glucose Glucose

Glucose : ____g / mol 1000 g Glucose = ____ mol

____

Ethanol

Ethanol: ____g / mol

Kohlenstoffdioxid (CO₂)

 $Kohlenstoffdioxid: ____ g \ / \ mol$

____ mol Glucose →

____ mol Ethanol + ____ mol CO₂

1000 g Glucose \rightarrow

 $\underline{\hspace{1cm}}$ mol x $\underline{\hspace{1cm}}$ g = $\underline{\hspace{1cm}}$ g Ethanol

 $\underline{\hspace{1cm}}$ mol x $\underline{\hspace{1cm}}$ g = $\underline{\hspace{1cm}}$ g CO₂

CH₂OH H CH2OH H OH H OH H OH H OH OH OH

Ethanol

► Gärung (Ethanolertrag)

LÖSUNG

Wie viel Ethanol kann man aus Zucker (Glucose) gewinnen?

Reaktionsgleichung (Gärung)

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2CO_2$$

Molmassen: Wasserstoff 1

Kohlenstoff 12 Sauerstoff 16

Glucose Glucose

Glucose : ___180___g / mol

 $1000 \text{ g Glucose} = _5,56_ \text{ mol}$

Ethanol

Ethanol : ___46__g / mol

Kohlenstoffdioxid

Kohlenstoffdioxid: __44__g / mol

 $_{---}$ 5,56 $_{--}$ mol Glucose \rightarrow

____11,11___ mol Ethanol + __11,11_ mol CO₂

1000 g Glucose →

 $_{11,11}$ mol x $_{46}$ g = $_{511,11}$ g Ethanol

 $_11,11$ mol x $_44$ $g = _488,89$ $g CO_2$

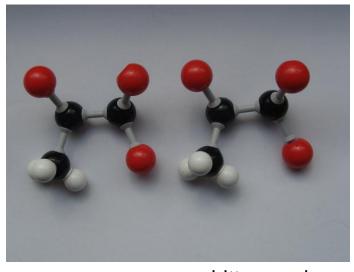
CH₂OH H C H OH HO H


Ethanol

► Alkoholische Gärung mit dem Molekülbaukasten darstellen (Glucose → Pyruvat → Acetaldehyd → Ethanol)

Baue ein Glucosemolekül: Summenformel:

Glucose (Zucker)

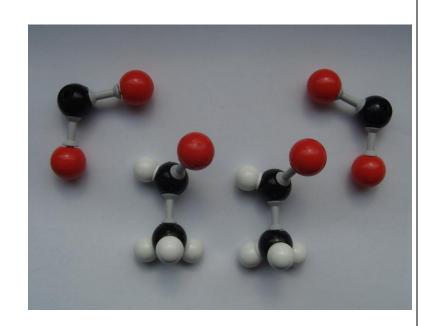

Ein Glucose-Molekül ($C_6H_{12}O_6$) wird durch Glycolyse in

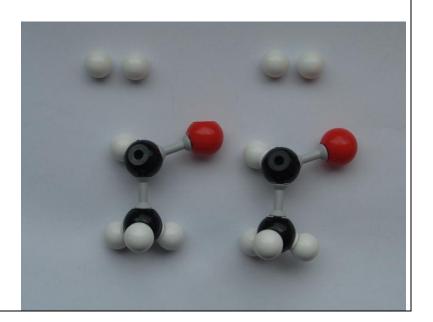
2 Moleküle **Pyruvat** (C₃H₃O₂ +O⁻) verwandelt.

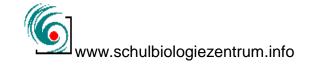
Dabei werden 6 Atome Wasserstoff abgespalten.

Diese werden mit 3 Sauerstoffatomen (Atmung!) zu Wasser (H₂O) vereinigt.

Pyruvat

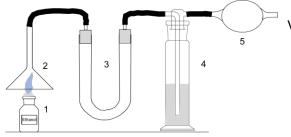

bitte wenden...


Aus den beiden **Pyruvat**-Molekülen ($C_3H_3O_2 + O^{-}$) werden unter Freisetzung von 2 **CO₂**-Molekülen 2 Moleküle **Acetaldehyd** (C_2H_4O)


Acetaldehyd

An beide **Acetaldehyd**-Moleküle (C_2H_4O) werden durch **NADH+H**⁺ 2 **Wasserstoffatome** gehängt. Dadurch entstehen 2 Moleküle **Ethanol** $(C_2H_5OH \text{ oder } C_2H_6O)$.

Ethanol

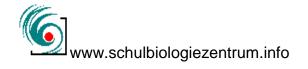


► **Verbrennung** (Reaktionsprodukte)

Verbrennung von Ethanol Nachweis der Reaktionsprodukte

- Gib so viel klares (!) Kalkwasser* in die Waschflasche, dass das Glasrohr in die Flüssigkeit taucht.
- Verschließe die Waschflasche
- Schließe die Wasserstrahlpumpe an den Wasserhahn (Ersatzweise Pumpball!)
- Entzünde den Ethanolbrenner und schiebe ihn unter den Trichter
- Öffne den Wasserhahn (nur bei Verwendung der Wasserstrahlpumpe)

Verbrenne Ethanol

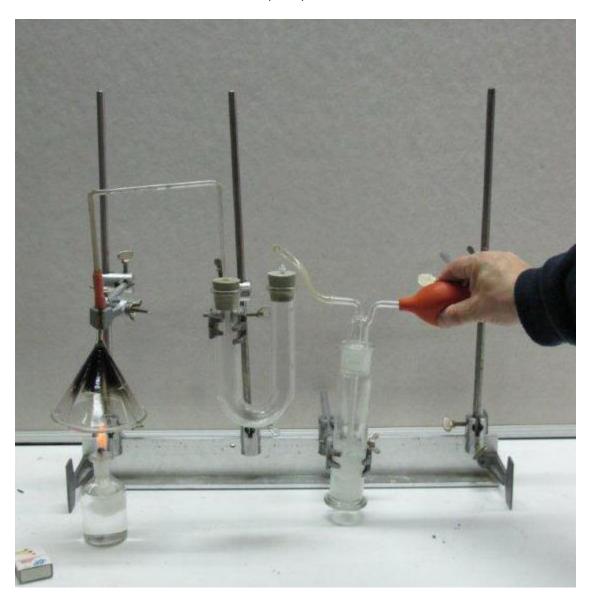

 Sauge die Verbrennungsgase durch das U-Rohr und die Waschflasche

- 1 Ethanolbrenner
- 2 Trichter
- 3 U-Rohr
- 4 Waschflasche mit Kalkwasser
- 5 Pumpball

- Achte auf die Wand des U-Rohrs
- Achte auf das Kalkwasser

Bei der Verbrennung von Ethanol entsteht

*) Mit Kalkwasser weist man Kohlenstoffdioxid (CO₂) nach: Wird CO₂-haltige Luft in klares Kalkwasser geleitet wird es trüb. Kalkwasser ist eine gefilterte klare wässrige Lösung aus Calciumhydroxid



Versuchsaufbau:

Ethanol: Nachweis der Verbrennungsprodukte

Verbrennungsgase einer Ethanolkerze (Mit Ethanol gefüllte kleine Flasche mit Wattedocht) werden mit einem Trichter aufgefangen und mit einer Saugpumpe durch ein trockenes (!) U-förmiges Glasrohr und anschließend durch eine mit Kalkwasser gefüllte Waschflasche gesogen.

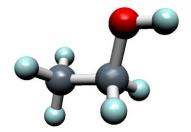
Kondensatbildung im U-Rohr zeigt die Bildung von Wasser, Trübung des Kalkwassers das Kohlenstoffdioxid (CO₂).

► Verbrennung (Vollständige Verbrennung, Reaktionsprodukte)

Verbrennung von Ethanol (I)

Ein Molekül Ethanol besteht aus

- 2 Kohlenstoffatomen (C)
- 6 Wasserstoffatomen (H)
- 1 Sauerstoffatom (O)


Summenformel:	oder				
Strukturformel:					
Bei vollständiger Verb	rennung von Ethanol	unter Sauer	rstoffzufuhr (O ₂)	entsteht	
KohlenstoffdionWasser (H₂O)	kid (CO ₂)				
Reaktionsgleichung: ("Gesetz der Erhaltung der Masse" anwenden!)					
+	→	_ + _			

► Verbrennung (Vollständige Verbrennung, Reaktionsprodukte)

LÖSUNG

Verbrennung von Ethanol (I)

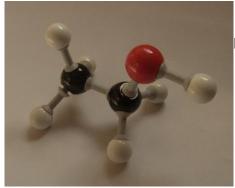
Ein Molekül Ethanol besteht aus

- 2 Kohlenstoffatomen (C)
- 6 Wasserstoffatomen (H)
- 1 Sauerstoffatom (O)

Summenformel: C_2H_6O oder C_2H_5OH

Bei vollständiger Verbrennung von Ethanol unter Sauerstoffzufuhr (O2) entsteht

- Kohlenstoffdioxid (CO₂)
- Wasser (H₂O)


Reaktionsgleichung: ("Gesetz der Erhaltung der Masse" anwenden!)

$$C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

► Verbrennung (Vollständige Verbrennung, Reaktionsprodukte)

Verbrennung von Ethanol (I b)

Ein Molekül Ethanol besteht aus

- 2 Kohlenstoffatomen (C)
- 6 Wasserstoffatomen (H)
- 1 Sauerstoffatom (O)

Summenformel: _____oder ____

Strukturformel:

Baue ein Ethanol-Molekül und stelle den Verbrennungsvorgang dar!

Ethanol verbrennt mit Sauerstoff (O₂)

zu

Kohlenstoffdioxid (CO₂)



und Wasser (H2O)

Stelle den Verbrennungsvorgang als Modell dar!

Reaktionsgleichung: ("Gesetz der Erhaltung der Masse" anwenden!)

► Verbrennung (Emission)				
Verbrennung von Ethanol (II)				
Reaktionsgleichung:				
+ +				
CO ₂ - Emission pro Liter Ethanol				
Molmassen:				
Molmasse: Wasserstoff 1 Kohlenstoff 12 Sauerstoff 16				
Ethanol				
 Dichte: 0,79 g / cm³ 1 Liter Ethanol = g Molmasse: g / mol 				
1 Liter enthält mol Ethanol				
Kohlenstoffdioxid				
 Dichte: 1,98k kg / m³ (0°C, 1013 hPa) Molmasse: g / mol 				
mol Ethanol → mol Kohlenstoffdioxid				
mol x g g Kohlenstoffdioxid				
Das entspricht einem Volumen (0°C, 1013 hPa) von m ³				

► Verbrennung (Emission)

LÖSUNG

Verbrennung von Ethanol (II)

Reaktionsgleichung:

 $_C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O_$

CO₂ - Emission pro Liter Ethanol

Molmassen:

• Molmasse: Wasserstoff 1

Kohlenstoff 12

Sauerstoff 16

Ethanol

• Dichte: 0,79 g / cm³

1 Liter Ethanol = ____790___ g

• Molmasse: ____46__g / mol

1 Liter enthält ___17,17__ mol Ethanol

Kohlenstoffdioxid

• Dichte: 1,98k kg / m³ (0°C, 1013 hPa)

• Molmasse: ____44__g / mol

____17,17___mol Ethanol \rightarrow __34,35___ mol Kohlenstoffdioxid

__34,35__ mol x __44__ g = ____1511,30__ g Kohlenstoffdioxid

Das entspricht einem Volumen (0°C, 1013 hPa) von ____0,763___ m³

INFO:

$$1 \text{ mol} \equiv 6,022 \cdot 10^{23} \text{ Teilchen}$$

Normalbedingungen:

$$p = 1 \text{ atm} = 1,01325 \cdot 10^5 \text{ Pa}$$

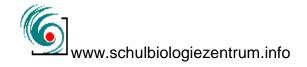
 $T = 0 \text{ °C} = 273,15 \text{ K}$

Satz von Avogadro:

Gleiche Volumina idealer Gase enthalten bei gleichem Druck und gleicher Temperatur gleich viele Moleküle.

Folge:

Ein mol jeden Gases nimmt bei gleicher Temperatur und gleichem Druck das gleiche Volumen ein.


Hintergrund:

Kleine Teilchen bewegen sich schneller (Folge: Höherer Druck) als große

Ein mol eines idealen Gases entspricht einem Volumen von:

$$V = \frac{1 \text{ mol} \cdot 8,\!314472 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 273,\!15 \text{ K}}{1,\!01325 \cdot 10^5 \text{ Pa}} = 0,\!022414 \, \text{m}^3 = 22,\!414 \, \text{Liter}$$

1 mol \rightarrow 22,4 Liter

► Verbrennung (Emission)

Verbrennung von Ethanol: Volumen CO₂

Bei der Verbrennung von 1 Liter Ethanol entsteht etwa 0,75 m³ CO₂ *

Zusammenhang zwischen Jahreskilometerleistung und CO₂-Emission:

Durchschnittlicher Verbrauch: ■ 5 I /100 km , ■ 7,5 I /100 km , ■ 10 I /100 km

Lege Tabellen an.

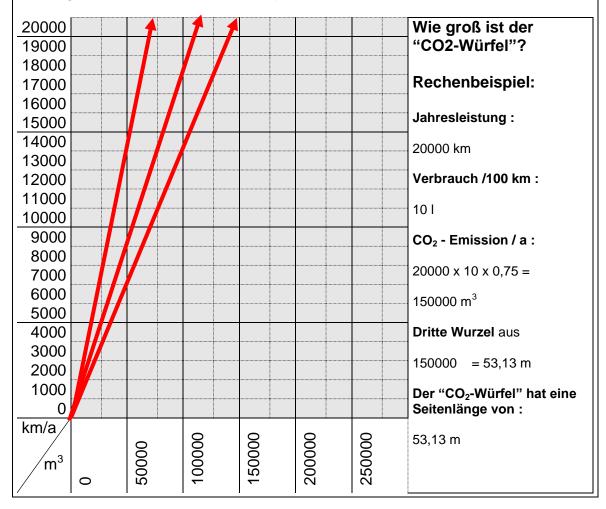
Übertrage die Tabellenwerte in den Graphen.

20000 19000							Wie groß ist der "CO2-Würfel"?
18000							
17000							Rechenbeispiel:
16000							
15000							Jahresleistung :
14000							20000 km
13000							
12000							Verbrauch /100 km :
11000							10
10000							101
9000							CO ₂ - Emission / a :
8000							20000 v 40 v 0 75
7000							20000 x 10 x 0,75 =
6000							150000 m ³
5000							
4000							Dritte Wurzel aus
3000							150000 = 53,13 m
2000							,
1000							Der "CO ₂ -Würfel" hat eine
0							Seitenlänge von :
km/a			0	00	00	0	53,13 m
m^3)00)00	000)00	250000	
	0	50000	100000	150000	200000	25(
/	_		l	l	_	1	

► Verbrennung (Emission)

LÖSUNG

Verbrennung von Ethanol: Volumen CO₂


Bei der Verbrennung von 1 Liter Ethanol entsteht etwa 0,75 m³ CO₂ *

Zusammenhang zwischen Jahreskilometerleistung und CO₂-Emission:

Durchschnittlicher Verbrauch: ■ 5 I /100 km , ■ 7,5 I /100 km , ■ 10 I /100 km

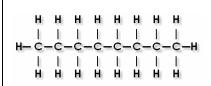
Lege Tabellen an.

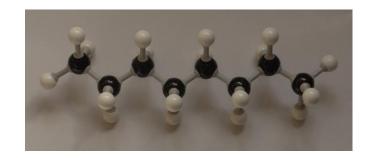
Übertrage die Tabellenwerte in den Graphen.

Jahresleistung 20000 km

■ 5 $I/100 \text{ km} = 75000 \text{ m}^3$ ■ 7,5 $I/100 \text{ km} = 112500 \text{ m}^3$, ■ 10 $I/100 \text{ km} = 150000 \text{ m}^3$

Vom Acker in den Tank (Bioethanol) • Erdöl: n- Alkane


Information: Erdöl und Alkane


	n-Alkan	Formel	Schmelz- temperatur	Siede- temperatur	Dichte
*	Methan	CH₄	90,65 K -182,5 ° C	111,4 K -161,75 °C	0,667 kg/m³
33	Ethan	C ₂ H ₆	90 K -183.15°C	185 K -88.15°C	1,212 kg/m³
***	Propan	C₃H ₈	85 K -188.15°C	231 K -42.15°C	1,83 kg/m³
333	Butan	C ₄ H ₁₀	135 K -138.15°C	272,5 K -0,65°C	2,703 kg/m³
	Pentan	C ₅ H ₁₂	144 K -129.15°C	309 K 35.85°C	0,626 g/cm ³
****	Hexan	C ₆ H ₁₄	178 K -95.15°C	342 K 68.85°C	0,659 g/cm ³
	Heptan	C ₇ H ₁₆	182 K -91.15°C	371 K 97.85°C	0,684 g/cm ³
	Oktan	C ₈ H ₁₈	216 K -57.15°C	399 K 125.85°C	0,718 g/cm ³
	Nonan	C ₉ H ₂₀	222 K -51.15°C	424 K 150.85°C	0,733 g/cm ³
	Decan	C ₁₀ H ₂₂	243 K -30.15°C	447 K 173.85°C	0,73 g/cm ³

► Verbrennung (Emission)

Verbrennung von Benzin (Oktan)

Reaktionsgleichung:

_____ + ____ → ____ + ____

CO₂ - Emission pro Liter Benzin (Oktan)

Molmassen: Wasserstoff 1
Kohlenstoff 12

Sauerstoff 16

Benzin (Oktan)

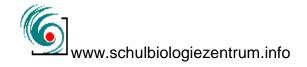
Dichte: 0,70 g / cm³
 1 Liter Benzin (Oktan) = _____ g

Molmasse: ____ g / mol

1 Liter enthält ____ mol Benzin (Oktan)

Kohlenstoffdioxid

• Dichte: 1,98k kg / m³ (0°C, 1013 hPa)

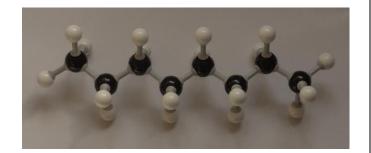

Molmasse: ____ g / mol

1 Liter (_6,14_ mol) Benzin (Oktan)

→ _____ mol Kohlenstoffdioxid

____ mol x ____ g = ____ g Kohlenstoffdioxid

Das entspricht einem Volumen (0°C, 1013 hPa) von _____ m³



► Verbrennung (Emission)

LÖSUNG

Verbrennung von Benzin (Oktan)

Reaktionsgleichung:

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_2$$

CO₂ - Emission pro Liter Benzin (Oktan)

Molmassen: Wasserstoff 1 Kohlenstoff 12

Sauerstoff 16

Benzin (Oktan)

Dichte: 0,70 g / cm³
 1 Liter Benzin (Oktan) = ____700___ g

Molmasse: ____114__ g / mol

1 Liter enthält ___6,14__ mol Benzin (Oktan)

Kohlenstoffdioxid

• Dichte: 1,98k kg / m³ (0°C, 1013 hPa)

• Molmasse: ____44__ g / mol

1 Liter (_6,14_ mol) Benzin (Oktan)

→ 49,12 mol Kohlenstoffdioxid

__49,12__ mol x __44__ g = ___2161,40__ g Kohlenstoffdioxid

Das entspricht einem Volumen (0°C, 1013 hPa) von __1,09___ m³

INFO:

$$1 \text{ mol} \equiv 6,022 \cdot 10^{23} \text{ Teilchen}$$

Normalbedingungen:

$$p = 1 \text{ atm} = 1,01325 \cdot 10^5 \text{ Pa}$$

$$T = 0$$
 °C = 273,15 K

Satz von Avogadro:

Gleiche Volumina idealer Gase enthalten bei gleichem Druck und gleicher Temperatur gleich viele Moleküle.

Folge:


Ein mol jeden Gases nimmt bei gleicher Temperatur und gleichem Druck das gleiche Volumen ein.

Hintergrund:

Kleine Teilchen bewegen sich schneller (Folge: Höherer Druck) als große

Ein mol eines idealen Gases entspricht einem Volumen von:

$$V = \frac{1 \text{ mol} \cdot 8,314472 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 273,\!15 \text{ K}}{1,01325 \cdot 10^5 \text{ Pa}} = 0,\!022414 \, \text{m}^3 = 22,\!414 \, \text{Liter}$$

► Verbrennung (Emission)

Verbrennung von Benzin (Oktan): Volumen CO2

Bei der Verbrennung von 1 Liter Benzin (Oktan) entsteht etwa 1 m³ CO₂ *

Zusammenhang zwischen Jahreskilometerleistung und CO₂-Emission:

Durchschnittlicher Verbrauch: ■ 5 I /100 km , ■ 7,5 I /100 km , ■ 10 I /100 km

Lege Tabellen an.

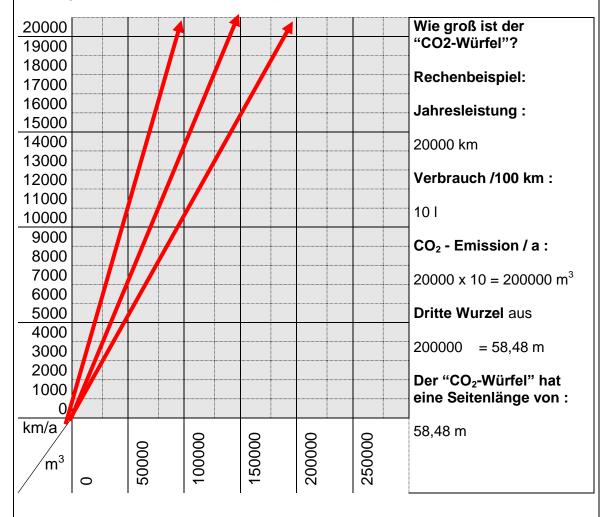
Übertrage die Tabellenwerte in den Graphen.

20000							Wie groß ist der
19000							"CO2-Würfel"?
18000							Bashanhaisnialı
17000							Rechenbeispiel:
16000							Jahresleistung :
15000							
14000							20000 km
13000							
12000							Verbrauch /100 km :
11000							10
10000							101
9000							CO ₂ - Emission / a :
8000							_
7000							20000 x 10 = 200000 m ³
6000							
5000							Dritte Wurzel aus
4000							200000 = 58,48 m
3000							200000 = 30,40 111
2000							Der "CO ₂ -Würfel" hat
1000							eine Seitenlänge von :
$\frac{0}{\text{km/o}}$							
km/a			00	00	00	00	58,48 m
m ³		00	100000	150000	200000	00	
/ '''	0	50000	10	15	20	250000	
/		l		1		l	

► Verbrennung (Emission)

LÖSUNG

Verbrennung von Benzin (Oktan): Volumen CO₂


Bei der Verbrennung von 1 Liter Benzin (Oktan) entsteht etwa 1 m³ CO₂ *

Zusammenhang zwischen Jahreskilometerleistung und CO₂-Emission:

Durchschnittlicher Verbrauch: ■ 5 I /100 km , ■ 7,5 I /100 km , ■ 10 I /100 km

Lege Tabellen an.

Übertrage die Tabellenwerte in den Graphen.

► Verbrennung (Emission)

CO₂-Ausstoß pro Kilometer

Kohlenstoffdioxid

• Dichte: 1,98k kg / m³ (0°C, 1013 hPa)

Ethanol

 CO_2 -Emission pro Liter (CO_2 / L): 1511,30 g

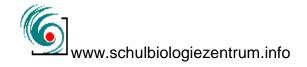
Verbrauch Liter / 100 km (L / 100 km): 7 l (Beispiel)

CO₂-Emission pro 100 km (CO₂ / 100 km) : _____ g

CO₂-Emission pro Kilometer (CO₂ / km): _____ g

CO₂-Volumen / Liter:

$$\frac{1 \text{ m}^3}{1980 \text{ g}} \times \text{g CO}_2 / \text{L} = \underline{\qquad} \text{m}^3$$


CO₂-Volumen / 100 km:

CO₂-Volumen / km:

$$\frac{1 \text{ m}^3}{1980 \text{ g}} \text{ x g CO}_2 / \text{ km x} ___ \text{m}^3$$

Die Kantenlängen der "CO₂-Würfel" lassen sich berechnen indem man die dritte Wurzel des Volumens zieht:

Beispiel: Volumen 0,763 $\text{m}^3 \rightarrow$ 0,914 m

► Verbrennung (Emission)

LÖSUNG

CO₂-Ausstoß pro Kilometer

Kohlenstoffdioxid

• Dichte: 1,98k kg / m³ (0°C, 1013 hPa)

Ethanol

 CO_2 -Emission pro Liter (CO_2 / L) : ___1511,30___g

Verbrauch Liter / 100 km (L / 100 km): _7_ (Beispiel)

 CO_2 -Emission pro 100 km (CO_2 / 100 km) : ___10579,1___ g

CO₂-Emission pro Kilometer (CO₂ / km) : ___105,8__ g

CO₂-Volumen / Liter:

$$\frac{1 \text{ m}^3}{1980 \text{ q}} \times \text{g CO}_2 / \text{L} = \frac{0,763}{m^3}$$

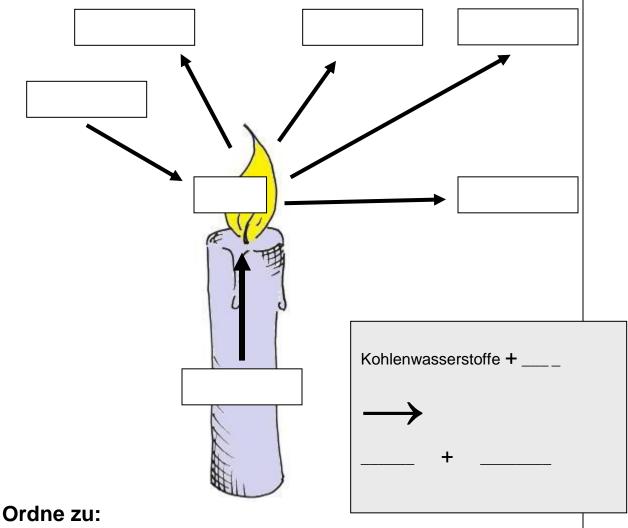
CO₂-Volumen / 100 km:

$$\frac{1 \text{ m}^3}{1980 \text{ g}} \times \text{g CO}_2 / 100 \text{ km } \times \underline{5,341} \text{m}^3$$

CO₂-Volumen / km:

Die Kantenlängen der "CO₂-Würfel" lassen sich berechnen indem man die dritte Wurzel des Volumens zieht:

Beispiel: Volumen 0,763 m³ \rightarrow 0,914 m



► Verbrennung (Emission)

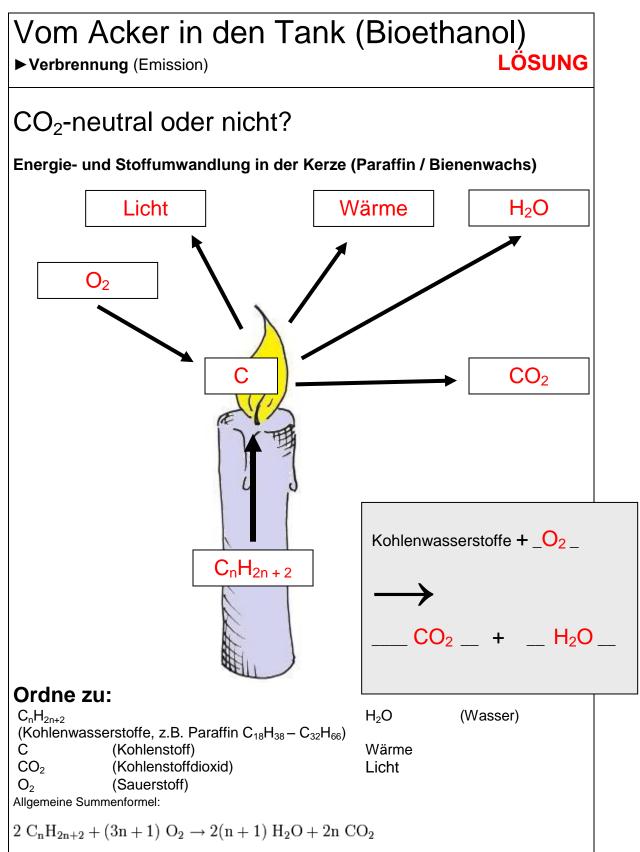
CO₂-neutral oder nicht?

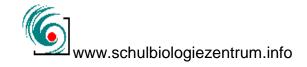
Energie- und Stoffumwandlung in der Kerze (Paraffin / Bienenwachs)

 C_nH_{2n+2} (Kohlenwasserstoffe, z.B. Paraffin C₁₈H₃₈ – C₃₂H₆₆)

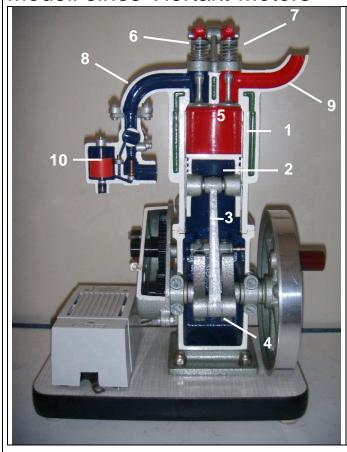

(Kohlenstoff) (Kohlenstoffdioxid) CO_2

(Sauerstoff) O_2 Allgemeine Summenformel:


 $2 C_n H_{2n+2} + (3n+1) O_2 \rightarrow 2(n+1) H_2 O + 2n CO_2$


 H_2O (Wasser)

Wärme Licht



► **Verbrennung** (Viertaktmotor)

Modell eines Viertakt-Motors

Versuche, das Funktionsprinzip des Viertaktmotors zu erklären.

Finde folgende **Elemente**:

_	7. dindor (
•	Zylinder ()
•	Kolben ()
•	Pleuelstange ()
•	Kurbelwelle ()
•	Zündkerze ()
•	Einlassventil ()
•	Auslassventil ()
•	Ansaugrohr ()
•	Abgasrohr ()
•	Vergaser ()
•	Nockenwelle (Rückseite)

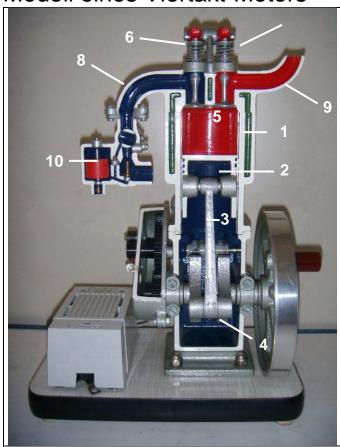
Stößelstangen (Rückseite)

Zeige den Ablauf der 4 Takte: (Notiere "auf" bzw. "zu")

•	Ansaugen	Einlassventil () /	Auslassventil	()
•	Verdichten	Einlassventil () /	Auslassventil	()
•	Arbeiten	Einlassventil () /	Auslassventil	()
•	Ausstoßen	Einlassventil () /	Auslassventil	()

Wie dreht sich die Kurbelwelle?

- □ Im Uhrzeigersinn (rechts)
- □ Gegen den Uhrzeigersinn (links)



► Verbrennung (Viertaktmotor)

LÖSUNG

Modell eines Viertakt-Motors

Versuche, das Funktionsprinzip des Viertaktmotors zu erklären.

Finde folgende **Elemente**:

- Zylinder (__1__)
- Kolben (__2__)
- Pleuelstange (__3__)
- Kurbelwelle (__4__)
- Zündkerze (__5__)
- Einlassventil (__6__)
- Auslassventil (__7__)
- Ansaugrohr (__8__)Abgasrohr (__9__)
- Vergaser (__10__)
- Nockenwelle (Rückseite)
- Stößelstangen (Rückseite)

Zeige den Ablauf der 4 Takte: (Notiere "auf" bzw. "zu")

•	Ansaugen	Einlassventil (auf) /	Auslassventil (zu)
•	Verdichten	Einlassventil (zu) /	Auslassventil (zu)
•	Arbeiten	Einlassventil (zu) /	Auslassventil (zu)

Ausstoßen Einlassventil (__zu ___) / Auslassventil (__auf __)

Wie dreht sich die Kurbelwelle?

- ☐ Im Uhrzeigersinn (rechts)
- □ Gegen den Uhrzeigersinn (links)

► CO2 ("Treibhauseffekt")

Funktionsmodell "Treibhauseffekt"

Elemente:

- Scheinwerfer ("Sonne")
- Rotierende schwarze Metallkugel ("Erde")
- Transparente "Atmosphäre" aus Acryl mit "Fenstern" aus Haushaltsfolie
- Messgerät für Infrarotstrahlung ("Satellit")

Versuchsablauf:

- Gerät einschalten
- Abwarten bis "Äquator" (Metallring) etwa 60°C heiß ist
- Kontrolle mit dem Infrarot-Thermometer
- Zeiger des Messgeräts ("Satellit") in Maximumstellung bringen (Drehknopf: Rückseite)
- CO₂ aus Druckflasche langsam (!) in Plastikbecher geben
- Warten bis CO₂ Raumtemperatur angenommen hat (Thermometer)
- Becherinhalt langsam in "Atmosphäre" geben
- Dabei auf Zeiger des Messgeräts achten
- Korken abziehen
- Zeiger des Messgeräts beobachten
- Korken wieder einsetzen

Info:

Das Messgerät ("Satellit") ist ein Infrarotthermometer (IR) und misst die von der "Erde" ins All ausgesandte Wärmestrahlung (IR-Strahlung).

Sobald CO₂ in die "Atmosphäre" gegeben wird, wird ein Teil dieser Strahlung in der Atmosphäre absorbiert. Der "Satellit" registriert eine geringere IR-Strahlung.

Die Atmosphäre ist für das (kurzwellige) Sonnenlicht durchsichtig. CO₂ hält einen Teil der von der Erde zurückgesandten Wärmestrahlung zurück. Dadurch erwärmt sich die Atmosphäre. Die Erde wird wärmer.

▶ Brennwert Ethanol

LÖSUNG

Auf dem "Muskelkraftwerk" Energie erfahren: Wie viel "Power" steckt in dir und im Ethanol?

Setze dich auf das "Muskelkraftwerk" und tritt kräftig in die Pedalen!

- Jede Leuchte erfordert eine Leistung von __20__ Watt.
- Wie hoch ist deine Spitzenleistung? <u>400</u> Watt
- Wie lange kannst du 100 W leisten? ____300__ Sekunden

INFO

Modellrechnung: Wenn du 60 Sekunden lang 100 W leistest,

beträgt dein Energieverbrauch

 $E = 100 \text{ W} \times 60 \text{ s} = 6000 \text{ J} = 6 \text{ KJ}$

Aufgabe: Wie viel Energie hast du "verbraucht",

wenn du _300_ Sekunden lang 100 W leistest?

E = 100 W x 300 s = 30000 J = 30 KJ

In einem Liter Ethanol sind ≈ 21 MJ Energie enthalten (ca. 28 MJ/kg)

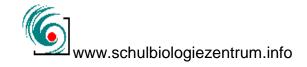
Wie lange könntest du mit 1 Liter Ethanol 100 Watt Leistung bringen?

21 MJ = $100 \text{ W} \cdot \text{x s}$ Forme die Gleichung um!

 $x = _21000000$ J / __100 __ W = __210000 __ s = 58,3 h

Merke: Mit dem Energiegehalt von 1 Liter Ethanol kannst du

58,3 Stunden lang 100 Watt Leistung umsetzen.


▶ Brennwert Ethanol

Auf dem "Muskelkraftwerk" Energie erfahren: Wie viel "Power" steckt in dir und im Ethanol?

Setze dich auf das "Muskelkraftwerk" und tritt kräftig in die Pedalen!

- Jede Leuchte erfordert eine Leistung von 20 Watt.
- Wie hoch ist deine Spitzenleistung? _____Watt
- Wie lange kannst du 100 W leisten? ____ Sekunden

INFO $100 \text{ g} \rightarrow 1 \text{ N (Newton)}$ 1 W = 1 J/s1 Nm = 1 J (Joule) = 1 Ws 1 Wh = 1 J x 3600 s = 3600 J = 3,6 KJ 1 J/s = 1 W (Watt)1 KWh = 1000 J x 3600 s1 KJ = 1000 J = 3600000 J = 3,6 MJ1 MJ = 1000 KJ = 1000000 J 1 KW = 1000 W 1 MW = 1000 KW = 1000000 W Modellrechnung: Wenn du 60 Sekunden lang 100 W leistest, beträgt dein Energieverbrauch $E = 100 \text{ W} \times 60 \text{ s} = 6000 \text{ J} = 6 \text{ KJ}$ Aufgabe: Wie viel Energie hast du "verbraucht", wenn du Sekunden lang 100 W leistest? $E = _{__}W x _{__}s = _{__}J = _{__}KJ$ In einem Liter Ethanol sind ≈ 21 MJ Energie enthalten (ca. 28 MJ/kg) Wie lange kann mit 1 Liter Ethanol 100 Watt Leistung erzeugt werden? 21 MJ = 100 W x s Forme die Gleichung um! x = _____ J /____ W = ____ s = ____ h Mit dem Energiegehalt von 1 Liter Ethanol kann Merke: Stunden lang 100 Watt Leistung erzeugt werden.

► Flächenbedarf Ethanol

LÖSUNG

Wie viel Ackerfläche braucht ein "umweltfreundliches" Auto?

 $1 \text{ ha} = 10000 \text{ m}^2$

Kartoffeln: Mais:

Ernteertrag 43000 kg/ha Ernteertrag 9200 kg/ha

 \rightarrow ≈ 3550 kg oder ≈ 4490 | Ethanol/ha \rightarrow ≈ 3520 kg oder ≈ 4460 | Ethanol/ha

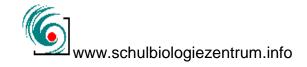
Ethanol-Ertrag (gerundet): 4500 I / ha

Wie viel Ackerfläche kostet das Autofahren mit Bio-Ethanol?

Bild: www.volkswagen.de

- VW Golf (Blue Motion), 77 KW, Verbrauch: 5.2 Liter Benzin/100 km
- Energiegehalt (Brennwert) von Ethanol
 ≈ 2/3 des Brennwerts von Benzin.
- Bei Verwendung von E85 liegt der Verbrauch ca. 1/3 höher als bei Benzin, d.h. bei etwa 6,9 l/100 km.
- E85 enthält 85% Bioethanol.
- 6,9 Liter E85 enthalten 5,9 I Bioethanol.

Zur Erzeugung von 1 Liter Bio-Ethanol notwendige Anbaufläche:


- Pro Liter sind 10000 m²/ 4500 Liter = _2,2 m²_ Ackerfläche erforderlich.
- Das ist ein Quadrat mit der Seitenlänge √2,2 = ≈ 1,5 m

Berechne die zur Gewinnung von Bio-Ethanol erforderliche Fläche (m² und Seitenlänge)

für eine Fahrt von Hannover nach Hamburg und zurück (einfache Distanz 130 km).

Der Ethanol-Anteil bei E85 liegt bei 5,9 I / 100 km.

$$\frac{5.9 \text{ l x } 260 \text{ km}}{100 \text{ km}} = \frac{15.3}{100 \text{ l Ethanol}} = \frac{$$

► Flächenbedarf Ethanol

Wie viel Ackerfläche braucht ein "umweltfreundliches" Auto?

 $1 \text{ ha} = 10000 \text{ m}^2$

Kartoffeln: Mais:

Ernteertrag 43000 kg/ha Ernteertrag 9200 kg/ha

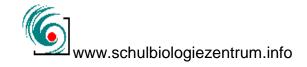
 \rightarrow ≈ 3550 kg oder ≈ 4490 l Ethanol/ha \rightarrow ≈ 3520 kg oder ≈ 4460 l Ethanol/ha

Ethanol-Ertrag (gerundet): 4500 I / ha

Wie viel Ackerfläche kostet das Autofahren mit Bio-Ethanol?

Bild: www.volkswagen.de

- VW Golf (Blue Motion), 77 KW,
 Verbrauch: 5,2 Liter Benzin/100 km
- Energiegehalt (Brennwert) von Ethanol
 ≈ 2/3 des Brennwerts von Benzin.
- Bei Verwendung von E85 liegt der Verbrauch ca. 1/3 höher als bei Benzin, d.h. bei etwa 6,9 l/100 km.
- E85 enthält 85% Bioethanol.
- 6,9 Liter E85 enthalten 5,9 I Bioethanol.

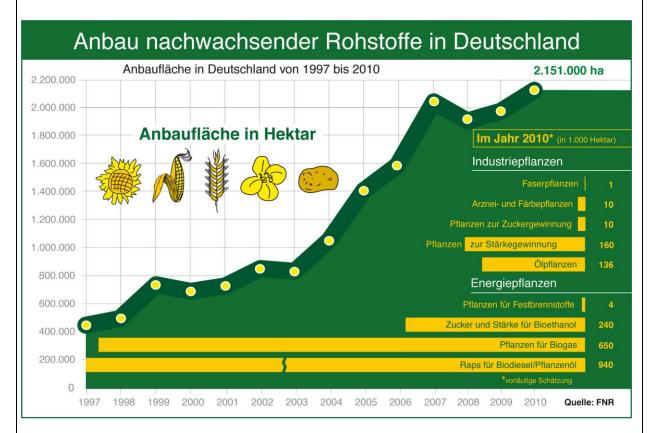

Zur Erzeugung von 1 Liter Bio-Ethanol notwendige Anbaufläche:

- Pro Liter sind 10000 m²/ 4500 Liter = ____ m²_ Ackerfläche erforderlich.
- Das ist ein Quadrat mit der Seitenlänge √___ = ≈ ___ m

Berechne die zur Gewinnung von Bio-Ethanol erforderliche Fläche (m² und Seitenlänge)

für eine Fahrt von Hannover nach Hamburg und zurück (einfache Distanz 130 km).

Der Ethanol-Anteil bei E85 liegt bei 5,9 I / 100 km.


► Flächenbedarf Ethanol

Deutschland hat eine Fläche von 357.125 km²

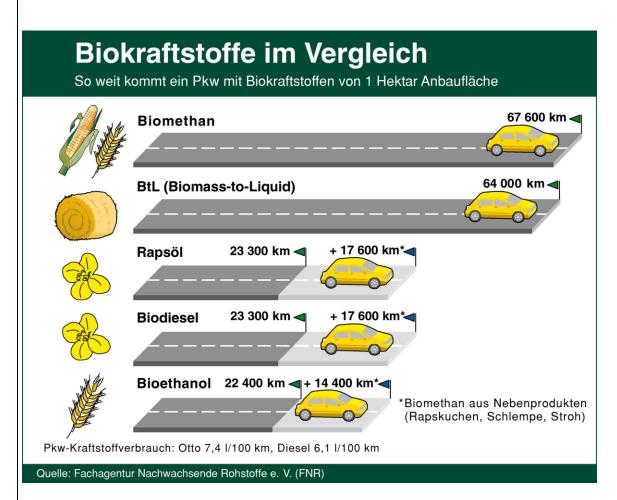
Davon sind 187.291 km² landwirtschaftlich genutzt (2009)

Quelle: Statistisches Amt des Bundes und der Länder, www.statistik-portal.de

 $1 \text{ km}^2 = 100 \text{ ha}$

Quelle:

Fachagentur Nachwachsende Rohstoffe e.V. (FNR), OT Gülzow, Hofplatz 1, 18276 Gülzow-Prüzen, www.energiepflanzen.info


Berechne den Flächenanteil zur Bioethanol-Produktion

- in Prozent der Gesamtfläche Deutschlands
- in Prozent der landwirtschaftlichen Nutzfläche Deutschlands
- in Prozent der zur Energieerzeugung genutzten landwirtschaftlichen Fläche

► Reichweite Bio-Ethanol

Quelle

Fachagentur Nachwachsende Rohstoffe e.V. (FNR), OT Gülzow, Hofplatz 1, 18276 Gülzow-Prüzen, www.energiepflanzen.info

•

► Flächenbedarf Ethanol

Wie viel Ackerfläche braucht Bioethanol? Zahlenmaterial


 $1 \text{ ha} = 10000 \text{ m}^2$

1000 | Bioethanol

- $= 9,58 \text{ t Kartoffeln bzw. } 0,22 \text{ ha} = 2200 \text{ m}^2 (46,9 \text{ x } 46,9 \text{ m})$
- $= 2,06 \text{ t Mais bzw. } 0,22 \text{ ha} = 2200 \text{ m}^2 (46,9 \text{ x } 46,9 \text{ m})$
- $= 2,59 \text{ t Weizen bzw. } 0,36 \text{ ha} = 3600 \text{ m}^2 (60 \text{ x } 60 \text{ m}) *$
- $= 2,4 \text{ t Roggen bzw. } 0,49 \text{ ha} = 4900 \text{ m}^2 (70 \text{ x } 70 \text{ m}) *$
- = 7,9 t Zuckerrüben bzw. 0,15 ha = 1500 m² (38,7 x 38,7 m) *

1 | Bioethanol

- = 9,58 kg Kartoffeln bzw. 2,2 m² (1,5 x 1,5 m)
- $= 2,06 \text{ kg Mais bzw. } 2,2 \text{ m}^2 (1,5 \text{ x } 1,5 \text{ m})$
- $= 2,59 \text{ kg Weizen bzw. } 3,6 \text{ m}^2 (1,9 \text{ x } 1,9 \text{ m}) *$
- = 2,4 kg Roggen bzw. 4, 9 m² (2,2 x 2,2 m) *
- = 7,9 kg Zuckerrüben bzw. 1,5 m² (1,2 x 1,2 m) *
- *) Quelle: BDB Bundesverband der deutschen Bioethanolwirtschaft http://www.bdbe.de/formelsammlung.html#III.%20Heizwerte

► Preisentwicklung Mais / Ethanol

FINANCIAL TIMES

vom 17.09.2010

Heiß auf Mais (Preisentwicklung Rohstoffbörsen)

Vor zwei Jahren trieben die hohen Kosten für Mais die Menschen in Mexiko auf die Straße. Tortillas waren für viele Arme zu teuer geworden. Jetzt nähert sich der Preis für das Grundnahrungs- und Futtermittel wieder dem damaligen Rekord.

von Barbara Schäder, Frankfurt

Bild: Reuters 2010

Der Kurs von Terminkontrakten zur Lieferung hat am Freitag an den asiatischen Börsen erstmals seit zwei Jahren die Marke von 5 Dollar pro Scheffel (25 Kilo) übersprungen. Zuletzt wurde dieser Kurs am 30. September 2008 erreicht. Vom Rekordniveau der Lebensmittelkrise im Juni 2008, als der meistgehandelte Maiskontrakt bis zu 6,95 Dollar kostete, ist der aktuelle Kurs zwar noch weit entfernt. Mit der 5-Dollar-Grenze sei aber "eine psychologisch wichtige Marke erreicht", sagte Brett Cooper vom US-Handelshaus FC Stone der Nachrichtenagentur Reuters in Sydney.

Der neuerliche Preisanstieg sei auf zunehmend schlechte Aussichten für die Ernte im weltweit wichtigsten Anbauland USA zurückzuführen, sagte Cooper. Das US-Landwirtschaftsministerium hatte vor einer Woche seine Prognose für dieses Jahr um 205 Millionen auf 13 Milliarden Scheffel (rund 330 Millionen Tonnen) gesenkt. Damit fiele die Jahresernte zwar immer noch höher aus als 2009, viele Händler halten diese Schätzung aber für zu optimistisch. Hitze und Trockenheit hatten den Farmern im Mittleren Westen im August stark zugesetzt.

Überdies dürfte die Nachfrage nach Mais vor allem in China weiter steigen. Die Volksrepublik hat in diesem Sommer nach vierjähriger Unterbrechung erstmals wieder angefangen, das Getreide aus den USA zu importieren. Nächste Woche droht nun auch noch ein Frosteinbruch in Chinas eigener Kornkammer, der Region Jilin im Nordosten des Landes. Selbst wenn die Maispflanzen dies überstehen sollten - "China wird so oder so Mais aus den USA kaufen müssen", sagte Benson Wong von der australischen Handelsfirma Commodity Broking Service laut Reuters.

Denn mit zunehmendem Wohlstand essen die Chinesen immer mehr Fleisch - und Mais ist ein wichtiges Futtermittel. Geflügel und Mastschweine erhalten eine Mischung aus verschiedenen Getreidesorten und Sojaschrot, der als Abfall bei der Herstellung von Speiseöl anfällt. Bei Kühen wird dieselbe Mischung dem Grünfutter beigemischt, um die Milchleistung zu steigern. In den vergangenen acht Wochen seien die Futtermittelkosten gegenüber Jahresbeginn bereits um ein Drittel gestiegen, sagte der

Geschäftsführer des Deutschen Verbands für Tiernahrung, Bernhard Krüsken, der FTD. Langfristig werde sich dies auch auf den Fleischpreis niederschlagen. "Ob Schwein, Geflügel oder Rind: Die Futterkosten machen mehr als die Hälfte der Produktionskosten aus", sagte Krüsken.

Analysten von Morgan Stanley prognostizieren als Folge der hohen Futtermittelkosten für das kommende Jahr, dass der Preis für lebende Schweine um 35 Prozent in die Höhe schnellt. Grundlage für diese Einschätzung ist allerdings, dass der Maispreis auf 6 Dollar pro Scheffel steigt. Dies sei zu befürchten, falls die Ernte in den USA noch unter das Niveau des vergangenen Jahres zurückfallen sollte, zitierte die Nachrichtenagentur Bloomberg den Analysten Hussein Allidina.

Neben den unsicheren Ernteprognosen treibt auch die Produktion von Biosprit den Maispreis in die Höhe. Das US-Landwirtschaftsministerium erwartet, das in den kommenden zwölf Monaten rund 4,7 Milliarden Scheffel Mais zu Ethanol verarbeitet werden, also etwa ein Drittel der Jahresernte. Seit 2006 hat sich diese Menge verdoppelt.

Der Preis für Ethanol steigt seit elf Wochen kontinuierlich an und erreichte am Mittwoch mit 2,074 Dollar pro Gallone (3,8 Liter) ein Neunmonatshoch. Die Händler spekulieren darauf, dass das US-Umweltministerium Ende September die Obergrenze für die Beimischung von Ethanol im Benzin von zehn auf 15 Prozent anhebt.

► Verbrennung (Methan)
Sauerstoffbedarf und CO2-Ausstoß

MUSTERRECHNUNG

Rechnen mit Molmassen: Methan (CH₄)

$$CH_4 + 2 O_2 \rightarrow 2 H_2O + CO_2$$

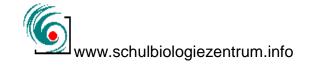
Wie viel Sauerstoff wird zur Verbrennung von 1m³ (720 g) Methan benötigt? Wie viel Wasser und Kohlenstoffdioxid entstehen bei der Verbrennung?

1 mol: Stoffmenge 6,02 x 10²³ (602 Trilliarden 200 Trillionen)*

Molgewichte (Periodensystem der Elemente)

CH₄ + 20₂ \rightarrow 2 H₂O + CO₂ + 2 mol O₂ + 2x2x16g $\begin{array}{ll} \rightarrow & 2 \text{ mol H}_2\text{O} \\ \rightarrow & 2x(2x1+16)g \\ \rightarrow & 36 \text{ q} \end{array}$ 1 mol CH₄ + 1 mol CO₂ 12g +4x1g + 12+2x16 + 64 g 16 a 36 g 44 a 80 g 80g

Wie viel **Sauerstoff** wird zur Verbrennung von 720 g (1 m³) Methan benötigt? Methan verhält sich zu Sauerstoff wie 16 : 64 oder 1 : 4 720 g / x g O_2 = 16 g / 64 g x = 2880 g O_2


Wie viel **Wasser** entsteht bei der Verbrennung von 720 g (1 m³) Methan? Methan verhält sich zu Wasser wie 16 : 36 oder 1 : 2,25

720 g / x g H₂O= 16 g / 36 g $x = 1620 \text{ g H}_2\text{O} = 1620 \text{ ml} = 1,62 \text{ l}$

Wie viel **Kohlenstoffdioxid** entsteht bei der Verbrennung von 720 g (1 m³) Methan? Methan verhält sich zu Kohlenstoffdioxid wie 16 : 44 oder 1 : 2,75 720 g / x g CO₂ = 16 g / 44 g x = 1980 g CO₂

 $720 \text{ g CH}_4 + 2880 \text{ g O}_2 = 1620 \text{ g H}_2\text{O} + 1980 \text{ g CO}_2$

3600 g = 3600 g

Die Volumina und Kantenlängen der "Würfel" lassen sich über die

- Dichte des Wassers bzw. der Gase
- oder im Falle der Gase über das **Avogadrosche Gesetz** berechnen:

Dichte:

Sauerstoff: 1,33 g / I oder 1,33 kg / m^3 Kohlenstoffdioxid: 1,98 g / I oder 1,98 kg / m^3

Sauerstoff 2,88 kg : 1,33 kg \rightarrow 2,16 m³ Kohlenstoffdioxid: 1,98 kg : 1,98 kg \rightarrow 1m³

Avogadrosches Gesetz:

1 mol (6,022 x 10^{23} Teilchen) eines idealen Gases nimmt bei Standardbedingungen (273,15 K = 0°C und 1013 hPa Druck) ein Volumen von 22,4 l (bei 20°C 24 l) ein.

Sauerstoff 2880 g : $64 \rightarrow 45$

 $2x 45 \text{ mol } x 22,4 \text{ I} = 2,016 \text{ m}^3 \text{ oder } 2x45 \text{ mol } x 24 \text{ I} = 2,160 \text{ m}^3$

Kohlenstoffdioxid: 1980 g: 44 → 45

45 mol x 22,4 l = 1,008 m³ oder 45 mol x 24 l = 1,08 m³

Sauerstoff Dritte Wurzel aus 2,1 $m^3 \rightarrow 1,28$ m Kantenlänge

Kohlenstoffdioxid Dritte Wurzel aus 1,0 m $^3 \rightarrow 1,00$ m Kantenlänge

*)

Die **Avogadro-Konstante** N 6,022 x 10²³ ist eine (fast) unvorstellbar hohe Zahl:

Jeder wird Billionär:

Auf der Erde leben etwa 8 Milliarden ($8x10^9$) Menschen. Wäre jedes in 1 mol enthaltene Teilchen ein Euro wert erhielte jeder Erdbewohner $6,022 \times 10^{23} / 8 \times 10^9 = 7,5 \times 10^{13}$ oder 75.000.000.000 Euro

1 mol sind in 18 ml Wasser enthalten...(H_2O , Molmasse H = 1 g, Molmasse O = 16 g)

► Verbrennung (Ethanol)
Sauerstoffbedarf und CO2-Ausstoß

MUSTERRECHNUNG

Rechnen mit Molmassen: Ethanol (C₂H₅OH)

 $C_2H_5OH + 3 O_2 \rightarrow 3 H_2O + 2 CO_2$

Wie viel Sauerstoff wird zur Verbrennung von 1 Liter (790 g) Ethanol benötigt? Wie viel Wasser und Kohlenstoffdioxid entstehen bei der Verbrennung?

1 mol: Stoffmenge 6,02 x 10²³ (602 Trilliarden 200 Trillionen)*

Molgewichte (Periodensystem der Elemente)

1 mol C_2H_5OH + 3 mol O_2 \rightarrow 3 mol H_2O + 2 mol CO_2

 $2x12 + 6x1 + 16 g + 3x2x16g \rightarrow 3x(2x1 + 16)g + 2x(12+2x16)g$

 $142 g \longrightarrow 142 g$

Wie viel **Sauerstoff** wird zur Verbrennung von 790 g (1 l) Ethanol benötigt? Ethanol verhält sich zu Sauerstoff wie 46 : 96

Wie viel Wasser entsteht bei der Verbrennung von 790 g (1 l) Ethanol?

Ethanol verhält sich zu Wasser wie 46:54


Wie viel Kohlenstoffdioxid entsteht bei der Verbrennung von 790 g (1 l) Ethanol?

Ethanol verhält sich zu Kohlenstoffdioxid wie 46:88

 $790 \text{ g} / \text{x g CO}_2 = 46 \text{ g} / 88 \text{ g}$ $\text{x} = 1511 \text{ g CO}_2$

 $790 \text{ g C}_8\text{H}_{18} + 1648 \text{ g O}_2 = 927 \text{ g H}_2\text{O} + 1511 \text{ g CO}_2$

2438 g = 2438 g

Die Volumina und Kantenlängen der "Würfel" lassen sich über die

- Dichte des Wassers bzw. der Gase
- oder im Falle der Gase über das Avogadrosche Gesetz berechnen:

Dichte:

Sauerstoff: 1,33 g / I oder 1,33 kg / m^3 Kohlenstoffdioxid: 1,98 g / I oder 1,98 kg / m^3

Sauerstoff 1,648 kg : 1,33 kg \rightarrow 1,24 m³

Kohlenstoffdioxid: 1,511 kg : 1,98 kg \rightarrow 0,76 m³

Avogadrosches Gesetz:

1 mol (6,022 x 10^{23} Teilchen) eines idealen Gases nimmt bei Standardbedingungen (273,15 K = 0°C und 1013 hPa Druck) ein Volumen von 22,4 l (bei 20°C 24 l) ein.

Sauerstoff 1648 g : $32 \rightarrow 51,5$ mol 51,5 mol x 22,4 l = 1,15 m³ oder 51,5 mol x 24 l = 1,24 m³

Kohlenstoffdioxid: 1511 g : 44 \rightarrow 34,3 mol 34,3 mol x 22,4 l = 0,77 m³ oder 34,3 mol x 24 l = 0,82 m³

Sauerstoff Dritte Wurzel aus 1,24 m³ → 1,07 m Kantenlänge

Kohlenstoffdioxid Dritte Wurzel aus 0,8 m³ → 0,93 m Kantenlänge

*)

Die **Avogadro-Konstante** N 6,022 x 10²³ ist eine (fast) unvorstellbar hohe Zahl:

Jeder wird Billionär:

Auf der Erde leben etwa 8 Milliarden ($8x10^9$) Menschen. Wäre jedes in 1 mol enthaltene Teilchen ein Euro wert erhielte jeder Erdbewohner $6,022 \times 10^{23} / 8 \times 10^9 = 7,5 \times 10^{13}$ oder 75.000.000.000 Euro

1 mol sind in 18 ml Wasser enthalten... (H_2O , Molmasse H = 1 g, Molmasse O = 16 g)

► Verbrennung (Oktan)
Sauerstoffbedarf und CO2-Ausstoß

MUSTERRECHNUNG

Rechnen mit Molmassen: Oktan (C₈H₁₈)

 $2 C_8 H_{18} + 25 O_2 \rightarrow 18 H_2 O + 16 CO_2$

Wie viel Sauerstoff wird zur Verbrennung von 1 Liter (700 g) Oktan benötigt? Wie viel Wasser und Kohlenstoffdioxid entstehen bei der Verbrennung?

1 mol: Stoffmenge 6,02 x 10²³ (602 Trilliarden 200 Trillionen)*

Molgewichte (Periodensystem der Elemente)

228 g + 800 g \rightarrow 324 g + 704 g

1028 g → 1028

Wie viel Sauerstoff wird zur Verbrennung von 700 g (1 l) Oktan benötigt?

Oktan verhält sich zu Sauerstoff wie 228: 800

 $700 \text{ g} / \text{x g O}_2 = 228 / 800$ $\mathbf{x} = 2456 \text{ g O}_2$

Wie viel **Wasser** entsteht bei der Verbrennung von 700 g (1 l) Oktan?

Oktan verhält sich zu Wasser wie 228 : 324

 $700 \text{ g} / \text{x g H}_2\text{O} = 228 \text{ g} / 324 \text{ g}$ $\text{x} = 995 \text{ g H}_2\text{O}$

Wie viel **Kohlenstoffdioxid** entsteht bei der Verbrennung von 700 g (1 l) Oktan?

Oktan verhält sich zu Kohlenstoffdioxid wie 228: 704

 $700 \text{ g/x g CO}_2 = 228 \text{ g/} 704 \text{ g}$ $\mathbf{x} = 2161 \text{ g CO}_2$

 $700 \ g \ C_8 H_{18} \qquad + \ 2456 \ g \ O_2 \qquad \qquad = \qquad 1025 \ g \ H_2 O \qquad + \qquad 2161 \ g \ CO_2$

3156 g = 3156 g

Die Volumina und Kantenlängen der "Würfel" lassen sich über die

- Dichte des Wassers bzw. der Gase
- oder im Falle der Gase über das **Avogadrosche Gesetz** berechnen:

Dichte:

1,33 g / I oder 1,33 kg / m³ Sauerstoff: $1.98 \text{ g} / \text{I oder } 1.98 \text{ kg} / \text{m}^3$ Kohlenstoffdioxid:

Sauerstoff 2,46 kg : 1,33 kg \rightarrow 1,85 m³

Kohlenstoffdioxid: 2,16 kg: 1,98 kg \rightarrow 1,09 m³

Avogadrosches Gesetz:

1 mol (6,022 x 10²³ Teilchen) eines idealen Gases nimmt bei Standardbedingungen (273,15 K = 0°C und 1013 hPa Druck) ein Volumen von 22,4 l (bei 20°C 24 l) ein.

Sauerstoff 2456 g: $32 \rightarrow 76,75$ mol

 $76,75 \text{ mol } x 22,4 \text{ l} = 1,72 \text{ m}^3 \text{ oder } 76,75 \text{ mol } x 24 \text{ l} = 1,84 \text{ m}^3$

Kohlenstoffdioxid: 2161 g : $44 \rightarrow 49,1$ mol 49,1 mol x 22,4 l = 1,10 m 3 oder 49,1 mol x 24 l = 1,18 m 3

Sauerstoff Dritte Wurzel aus 1,8 m³ → 1,22 m Kantenlänge

Kohlenstoffdioxid Dritte Wurzel aus 1,1 m³ → 1,03 m Kantenlänge

Die **Avogadro-Konstante** N 6,022 x 10²³ ist eine (fast) unvorstellbar hohe Zahl:

Jeder wird Billionär:

Auf der Erde leben etwa 8 Milliarden (8x10⁹) Menschen.

Wäre jedes in 1 mol enthaltene Teilchen ein Euro wert erhielte jeder Erdbewohner $6,022 \times 10^{23} / 8 \times 10^9 = 7,5 \times 10^{13}$ oder 75.000.000.000.000 Euro

1 mol sind in 18 ml Wasser enthalten... (H_2O , Molmasse H = 1 g, Molmasse O = 16 g)